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Disclaimer

In the interest of telling a certain story,

• this tutorial does not attempt to provide an authoritative
chronological account of the results;

• this tutorial does not claim to be complete (although a certain effort
in this direction was made);



What This Tutorial Is Not About

We will not address the following very interesting questions (and
apologize for a potentially misleading title):

• Complexity of coding schemes

• New families of algebraic codes

• Algebraic coding theory

•



What This Tutorial Is About

• Achievable rates that seem out of reach for “classical” arguments.

• Novel communication strategies where algebraic arguments appear
to be of key importance.

• Recipes for how to apply these strategies to networks.

• Elements missing from Information Theory books.



Outline

I. Discrete Alphabets

II. AWGN Channels

III. Network Applications



Point-to-Point Channels

w E
x pY |X

y
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The Usual Suspects:

• Message w ∈ {0, 1}k

• Encoder E : {0, 1}k → X n

• Input x ∈ X n

• Estimate ŵ ∈ {0, 1}k

• Decoder D : Yn → {0, 1}k

• Output y ∈ Yn

• Memoryless Channel p(y|x) =
n
∏

i=1

p(yi|xi)

• Rate R =
k

n
.

• (Average) Probability of Error: P{ŵ 6= w} → 0 as n→∞. Assume
w is uniform over {0, 1}k .



i.i.d. Random Codes

• Generate 2nR codewords
x = [X1 X2 · · · Xn] independently
and elementwise i.i.d. according to
some distribution pX

p(x) =

n
∏

i=1

pX(xi)

• Bound the average error probability
for a random codebook.

• If the average performance over
codebooks is good, there must exist
at least one good fixed codebook.
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(Weak) Joint Typicality

• Two sequences x and y are (weakly) jointly typical if
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• For our considerations, weak typicality is convenient as it can also be
stated in terms of differential entropies.

• If x and y are i.i.d. sequences, the probability that they are jointly
typical goes to 1 as n goes to infinity.



Joint Typicality Decoding

Decoder looks for a codeword that is jointly typical with the received
sequence y

Error Events

1. Transmitted codeword x is not jointly typical
with y.
=⇒ Low probability by the

Weak Law of Large Numbers.

2. Another codeword x̃ is jointly typical with y.

Cuckoo’s Egg Lemma

Let x̃ be an i.i.d. sequence that is independent from the received
sequence y.

P

{

(x̃,y) is jointly typical
}

≤ 2−n(I(X;Y )−3ǫ)

See Cover and Thomas.



Point-to-Point Capacity

• We can upper bound the probability of error via the union bound:

P{ŵ 6= w} ≤
∑

w̃ 6=w

P

{

(x(w̃),y) is jointly typical.
}

≤ 2−n(I(X;Y )−R−3ǫ) ← Cuckoo’s Egg Lemma

• If R < I(X;Y ), then the probability of error can be driven to zero
as the blocklength increases.

Theorem (Shannon ’48)

The capacity of a point-to-point channel is C = max
pX

I(X;Y ).



Linear Codes

• Linear Codebook: A linear map between messages and codewords
(instead of a lookup table).

q-ary Linear Codes

• Represent message w as a length-k vector over Fq.

• Codewords x are length-n vectors over Fq.

• Encoding process is just a matrix multiplication, x = Gw.
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• Recall that, for prime q, operations over Fq are just mod q
operations over the reals.

• Rate R =
k

n
log q



Random Linear Codes

• Linear code looks like a regular
subsampling of the elements of Fn

q .

• Random linear code: Generate
each element gij of the generator
matrix G elementwise i.i.d.
according to a uniform distribution
over {0, 1, 2, . . . , q − 1}.

• How are the codewords distributed?
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Codeword Distribution

It is convenient to instead analyze the shifted ensemble x̄ = Gw ⊕ v

where v is an i.i.d. uniform sequence. (See Gallager.)

Shifted Codeword Properties

1. Marginally uniform over Fn
q . For a given message w, the codeword x̄

looks like an i.i.d. uniform sequence.

P{x̄ = x} =
1

qn
for all x ∈ F

n
q

2. Pairwise independent. For w1 6= w2, codewords x̄1, x̄2 are
independent.

P{x̄1 = x1, x̄2 = x2} =
1

q2n
= P{x̄1 = x1}P{x̄2 = x2}



Achievable Rates

• Cuckoo’s Egg Lemma only requires independence between the true
codeword x(w) and the other codeword x(w̃). From the
union bound:

P{ŵ 6= w} ≤
∑

w̃ 6=w

P

{

(x(w̃),y) is jointly typical.
}

≤ 2−n(I(X;Y )−R−3ǫ)

• This is exactly what we get from pairwise independence.

• Thus, there exists a good fixed generator matrix G and shift v for
any rate R < I(X;Y ) where X is uniform.



Removing the Shift

w E
x̄

z
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• For a binary symmetric channel (BSC), the output can be written as
the modulo sum of the input plus i.i.d. Bernoulli(p) noise,

ȳ = x̄⊕ z

ȳ = Gw ⊕ v ⊕ z

• Due to this symmetry, the probability of error depends only on the
realization of the noise vector z.
=⇒ For a BSC, x = Gw is a good code as well.

• We can now assume the existence of good generator matrices for
channel coding.



Random I.I.D. vs. Random Linear

• What have we gotten for linearity (so far)?
Simplified encoding. (Decoder is still quite complex.)

• What have we lost?
Can only achieve R = I(X;Y ) for uniform X instead of
max
pX

I(X;Y ).

• In fact, this is a fundamental limitation of group codes,
Ahlswede ’71.

• Workarounds: symbol remapping Gallager ’68, nested linear codes

• Are random linear codes strictly worse than random i.i.d. codes?



Slepian-Wolf Problem

s1 E1
R1

s2 E2
R2

D
ŝ1
ŝ2

• Joint i.i.d. sources p(s1, s2) =

m
∏

i=1

pS1S2(s1i, s2i)

• Rate Region: Set of rates (R1, R2) such that the encoders can
send s1 and s2 to the decoder with vanishing probability of error

P{(̂s1, ŝ2) 6= (s1, s2)} → 0 as m→∞



Random Binning

• Codebook 1: Independently and uniformly assign each source
sequence s1 to a label {1, 2, . . . , 2mR1}

• Codebook 2: Independently and uniformly assign each source
sequence s2 to a label {1, 2, . . . , 2mR2}

• Decoder: Look for jointly typical pair (̂s1, ŝ2) within the received
bin. Union bound:

P

{

jointly typical (̂s1, ŝ2) 6= (s1, s2) in bin (ℓ1, ℓ2)
}

≤
∑

jointly typical (̃s1 ,̃s2)

2−m(R1+R2)

≤ 2m(H(S1,S2)+ǫ)2−m(R1+R2)

• Need R1 +R2 > H(S1, S2).

• Similarly, R1 > H(S1|S2) and R2 > H(S2|S1)



Slepian-Wolf Problem: Binning Illustration
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Random Linear Binning

• Assume source symbols take values in Fq.

• Codebook 1: Generate matrix G1 with i.i.d. uniform entries drawn
from Fq. Each sequence s1 is binned via matrix multiplication,
w1 = G1s1.

• Codebook 2: Generate matrix G2 with i.i.d. uniform entries drawn
from Fq. Each sequence s2 is binned via matrix multiplication,
w2 = G2s2.

• Bin assignments are uniform and pairwise independent (except for
sℓ = 0)

• Can apply the same union bound analysis as random binning.



Slepian-Wolf Rate Region

Slepian-Wolf Theorem

Reliable compression possible if and

only if:

R1 ≥ H(S1|S2) = hB(p)

R2 ≥ H(S2|S1) = hB(p)

R1 +R2 ≥ H(S1, S2) = 1 + hB(p)

Random linear binning is as good
as random i.i.d. binning!

R2

R1

S-W

hB(p)

hB(p)

R1 +R2 = 1 + hB(p)

Example: Doubly Symmetric Binary Source
S1 ∼ Bern(1/2) U ∼ Bern(p) S2 = S1 ⊕ U



Körner-Marton Problem

• Binary sources

• s1 is i.i.d. Bernoulli(1/2)

• s2 is s1 corrupted by Bernoulli(p)
noise

• Decoder wants the modulo-2 sum .

s1 E1
R1

s2 E2
R2

D û

u = s1 ⊕ s2

Rate Region: Set of rates (R1, R2) such that there exist encoders and
decoders with vanishing probability of error

P{û 6= u} → 0 as m→∞

Are any rate savings possible over sending s1 and s2 in their entirety?



Random Binning

• Sending s1 and s2 with random binning requires
R1 +R2 > 1 + hB(p)?

• What happens if we use rates such that R1 +R2 < 1 + hB(p)?

• There will be exponentially many pairs (s1, s2) in each bin!

• This would be fine if all pairs in a bin have the same sum, s1 + s2.
But this probability goes to zero exponentially fast!



Körner-Marton Problem: Random Binning Illustration
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Linear Binning

• Use the same random matrix G for linear binning at each encoder:

w1 = Gs1 w2 = Gs2

• Idea from Körner-Marton ’79: Decoder adds up the bins.

w1 ⊕w2 = Gs1 ⊕Gs2

= G(s1 ⊕ s2)

= Gu

• G is good for compressing u if R > H(U) = hB(p).

Körner-Marton Theorem

Reliable compression of the sum is possible if and only if:

R1 ≥ hB(p) R2 ≥ hB(p) .



Körner-Marton Problem: Linear Binning Illustration
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Körner-Marton Problem: Linear Illustration
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Körner-Marton Rate Region

R2

R1

S-W

K-M

hB(p)

hB(p)

Linear codes can improve performance!

(for distributed computation of dependent sources)



Multiple-Access Channels
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• Rate Region: Set of rates (R1, R2) such that the encoders can
send w1 and w2 to the decoder with vanishing probability of error

P{(ŵ1, ŵ2) 6= (w1,w2)} → 0 as m→∞



Multiple-Access Channels

• Cuckoo’s egg lemma applies to all three error events.

• For example, event that only ŵ1 is wrong:

P{ŵ1 6= w1, ŵ2 = w2} ≤
∑

w̃1 6=w1

P

{

(x1(w̃1),x2(w2),y) jointly typical
}

≤ 2−n(I(X1;Y |X2)−R1−3ǫ)

Rate Region (Ahlswede, Liao)

Convex closure of all (R1, R2) satisfying

R1 < I(X1;Y |X2)

R2 < I(X2;Y |X1)

R1 +R2 < I(X1,X2;Y )

for some p(x1)p(x2).



Finite-Field Multiple-Access Channels

• Linear codes can achieve
any rate available for
uniform p(x1), p(x2).

• For finite field MACs, can
achieve the whole capacity
region.

w1 E1
x1

w2 E2
x2

z

y
D
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R2

R1log q − H(Z)

log q − H(Z)

• Receiver observes noisy modulo sum of
codewords y = x1 ⊕ x2 ⊕ z

Finite Field MAC Rate Region

All rates (R1, R2) satisfying

R1 +R2 ≤ log q −H(Z)



Computation over Finite Field Multiple-Access Channels

• Independent msgs
w1,w2 ∈ F

k
q .

• Want the sum u = w1 ⊕w2

with vanishing prob. of error
P{û 6= u} → 0

w1 E1
x1

w2 E2
x2

z

y
D û

u = w1 ⊕w2

I.I.D. Random Coding

• Generate 2nR1 i.i.d. uniform codewords for user 1.

• Generate 2nR2 i.i.d. uniform codewords for user 2.

• With high probability, (nearly) all sums of codewords are distinct.

• This is ideal for multiple-access but not for computation.

• Need R1 +R2 ≤ log q −H(Z)



Random i.i.d. codes are not good for computation

2nR1 codewords

2nR2 codewords

2n(R1+R2) modulo sums of codewords
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Computation over Finite Field Multiple-Access Channels

Independent msgs w1,w2.

Want the sum u = w1 ⊕w2

with vanishing prob. of error
P{û 6= u} → 0

w1 E1
x1

w2 E2
x2

z

y
D û

u = w1 ⊕w2

Random Linear Coding

• Same linear code at both transmitters x1 = Gw1, x2 = Gw2.

• Sums of codewords are themselves codewords:

y = x1 ⊕ x2 ⊕ z

= Gw1 ⊕Gw2 ⊕ z

= G(w1 ⊕w2)⊕ z

= Gu⊕ z

• Need max(R1, R2) ≤ log q −H(Z)



Random linear codes are good for computation

2nR1 codewords

2nR2 codewords

2nmax(R1,R2) modulo sums of codewords

x1

x2

z

y



Computation over Finite Field Multiple-Access Channels

R2

R1

Linear

I.I.D.

log q −H(Z)

log q −H(Z)

• I.I.D. Random Coding: R1 +R2 ≤ log q −H(Z)

• Random Linear Coding: max (R1, R2) ≤ log q −H(Z)

• Linear codes double the sum rate without any dependency.

• Is this useful for sending messages (no computation)?



Two-Way Relay Channel

w1Has

Wants w2 w1

Has

Wants

w2Relay

• Elegant example proposed by Wu-Chou-Kung ’04.

• Closely related to butterfly network from Ahlswede-Cai-Li-Yeung ’00.



Two-Way Relay Channel – Time-Division
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Two-Way Relay Channel – Network Coding
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Two-Way Relay Channel – Physical-Layer Network Coding
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Two-Way Relay Channel – Physical-Layer Network Coding

w1 w2

w1 w2

(a)

(b)
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• Physical-layer network coding: exploiting the wireless medium for
network coding. Independently and concurrently proposed by
Zhang-Liew-Lam ’06, Popovski-Yomo ’06, Nazer-Gastpar ’06.

• Sometimes referred to as Analog Network Coding
Katti-Gollakota-Katabi ’08.

• Some recent surveys Liew-Zhang-Lu ’11, Nazer-Gastpar ’11.



q-ary Two-Way Relay Channel
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q-ary Two-Way Relay Channel
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Channel
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q-ary Two-Way Relay Channel

zMAC

yMAC

Relay

xBC

z2z1

User 1

x1w1

ŵ2

User 2

x2 w2

ŵ1

• i.i.d. noise sequences with

entropy H(Z).

• Rates R1 and R2.

• Upper Bound:
max (R1, R2) ≤ log q −H(Z)

• Random i.i.d.: Relay decodes w1,w2 and transmits w1 ⊕w2.
R1 +R2 ≤ log q −H(Z)

• Random linear: Relay decodes and retransmits w1 ⊕w2

max (R1, R2) ≤ log q −H(Z)



q-ary Two-Way Relay Channel

R2

R1

Linear

I.I.D.

log q −H(Z)

log q −H(Z)

• I.I.D. Random Coding: R1 +R2 ≤ log q −H(Z)

• Random Linear Coding: max (R1, R2) ≤ log q −H(Z)

• Linear codes can double the sum rate for exchanging messages.



Generalizing Linear Codes...

• Observation: For linear codes, the codeword statistics are uniform.
This follows straightforwardly from the fact that the sum of any two
codewords is again a codeword.

• Question: Can we retain some algebraic structure and have
non-uniform codeword statistics?

• Idea: Nested Linear Codes (see, for instance, Conway and Sloane

’92, Forney ’89, Zamir-Shamai-Erez ’02 ...):



Nested Linear Codes

• Consider a linear code Cc of rate 1− k/n :











x1
x2
...
xn











=











g11 g12 · · · g1,n−k

g21 g22 · · · g2,n−k
...

...
. . .

...
gn1 gn2 · · · gn,n−k

















w1
...
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





with parity check matrix Hc.

• For every binary sequence u of length k, define its coset as

Cc(u) = {x : Hcx = u}

• The coset leader is the one sequence in Cc(u) that has the smallest
Hamming weight.



Nested Linear Codes

• For any sequence x we write x mod Cc to denote the coset leader
corresponding to Hcx.

• Observation: This satisfies all the usual properties of the modulo
operation, such as

(x⊕ y) mod Cc = (x mod Cc ⊕ y mod Cc) mod Cc

Theorem

There exists a binary linear code of rate 1− k/n such that all 2k coset
leaders satisfy wHamming ≤ m, where

k/n ≥ Hb(m/n)− ǫ

Note: Such a code is thus a good covering code.



Nested Linear Codes

Next step: Decimate coset leaders: retain only those belonging to a
(“fine”) code.

That way, we end up with a code of 2k−k′ codewords satisfying two
properties:

1 Noise protection just like the fine code

2 The sum of any two codewords, modulo “the coarse code,” is again
a codeword

On the BSC with crossover probability p, this code achieves a rate

R = Hb(m/n)−Hb(p).

Note that this is not the capacity of this channel.



Distributed Dirty Paper Coding (Binary case)

Philosof-Zamir ’09, Philosof-Zamir-Erez ’09:

w1 E1
x1

s1

w2 E2
x2

s2

z

y
D ŵ1, ŵ2

Without input constraints, the problem is trivial.

But now, consider

wH(x1) ≤ m and wH(x2) ≤ m.



Distributed Dirty Paper Coding

• Choose codewords t1 and t2. Transmit

x1 = (t1 ⊕ s1) mod Cc and x2 = (t2 ⊕ s2) mod Cc

• Choose coarse code to satisfy Hamming input constraints. Receive:

y = [(x1 ⊕ s1) mod Cc]⊕ [(x2 ⊕ s2) mod Cc]⊕ s1 ⊕ s2 ⊕ z

• The key step is the following pre-processing step at the decoder:

y mod Cc = (x1 ⊕ s1 ⊕ x2 ⊕ s2 ⊕ s1 ⊕ s2 ⊕ z) mod Cc

= (x1 ⊕ x2 ⊕ z) mod Cc

• Last step: show that the noise is essentially unchanged by the
modulo operation.

• Can show that this achieves the capacity (see Philosof-Zamir-Erez

’09.)



Beyond Linear

Independent msgs w1,w2.

Want the sum u = w1 ⊕w2

with vanishing prob. of error
P{û 6= u} → 0

w1 E1
x1

w2 E2
x2

pY |X1X2

y
D û

Achievable Strategy (Nazer-Gastpar ’08)

Use the same linear code, max(R1, R2) ≤ I(X1 ⊕X2;Y ) (for binary,
uniform inputs)

• General Functions: Ui = f(W1i,W2i)

• Some achievable strategies, very hard in general (functional
compression is a special case)

• For network communication, don’t really care what functions in the
middle, only care about msgs
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Nested lattice results in this section are almost entirely drawn from:

• U. Erez and R. Zamir, Achieving 1
2 log(1 + SNR) on the AWGN

channel with lattice encoding and decoding, IEEE Transactions on
Information Theory, vol. 50, pp. 2293-2314, October 2004.

• U. Erez, S. Litsyn, and R. Zamir, Lattices which are good for (al-
most) everything, IEEE Transactions on Information Theory, vol. 51,
pp. 3401-3416, October 2005.

• R. Zamir, Lattices are everywhere, in Proceedings of the 4th Annual
Workshop on Information Theory and its Applications, La Jolla, CA,
February 2009.



Gaussian MMSE Estimation

• Signal X is a scalar Gaussian r.v. with mean 0 and variance P .

• Noise Z is an independent scalar Gaussian r.v. with mean 0 and
variance N .

• Estimate X from noisy observation Y = X + Z.

• Mean-squared error: E[(Y −X)2] = E[Z2] = N .

• Minimum mean-squared error (MMSE):

E[(αY −X)2] = E[(αX + αZ −X)2]

= E[α2Z2 + (1− α)2X2] Part of error due to X

= α2N + (1− α)2P

• Optimal α =
P

N + P
yields E[(αY −X)2] =

PN

N + P
.



Point-to-Point AWGN Channels

• Codewords must satisfy power
constraint:

‖x‖2 ≤ nP .

• i.i.d. Gaussian noise with variance
N :

z ∼ N (0, NI) .

• Shannon ’48: Channel capacity:

C =
1

2
log

(

1 +
P

N

)

w E
x

z
y

D ŵ

(Cover and Thomas,
Elements of Information Theory)

• In high dimensions, noise starts to look spherical.



Lattices

• A lattice Λ is a discrete subgroup of
R
n.

• Can write a lattice as a linear
transformation of the integer
vectors,

Λ = BZ
n ,

for some B ∈ R
n×n.

Lattice Properties

• Closed under addition:
λ1, λ2 ∈ Λ =⇒ λ1 + λ2 ∈ Λ.

• Symmetric: λ ∈ Λ =⇒ −λ ∈ Λ
Z
n is a simple lattice.
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Voronoi Regions

• Nearest neighbor quantizer:

QΛ(x) = argmin
λ∈Λ

‖x− λ‖2

• The Voronoi region of a lattice point
is the set of all points that quantize
to that lattice point.

• Fundamental Voronoi region V:
points that quantize to the origin,

V = {x : QΛ(x) = 0}

• Each Voronoi region is just a shift of
the fundamental Voronoi region V
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Nested Lattices

• Two lattices Λ and ΛFINE are nested
if Λ ⊂ ΛFINE

• Nested Lattice Code: All lattice
points from ΛFINE that fall in the
fundamental Voronoi region V of Λ.

• V acts like a power constraint

Rate =
1

n
log

(

Vol(V)

Vol(VFINE)

)
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Nested Lattices

• Two lattices Λ and ΛFINE are nested
if Λ ⊂ ΛFINE

• Nested Lattice Code: All lattice
points from ΛFINE that fall in the
fundamental Voronoi region V of Λ.

• V acts like a power constraint

Rate =
1

n
log

(

Vol(V)

Vol(VFINE)

)



Nested Lattice Codes from q-ary Linear Codes

• Choose an n× k generator
matrix G ∈ F

n×k
q for q-ary code.

• Integers serve as coarse lattice,
Λ = Z

n.

• Map elements {0, 1, 2, . . . , q − 1}
to equally spaced points between
−1/2 and 1/2.

• Place codewords x = Gw into
the fundamental Voronoi region
V = [−1/2, 1/2)n

0 1 2 3 4 · · · q − 1

0

1

2

3

4

...

q − 1

Fq

Fq

(− 1
2
,− 1

2
) ( 1

2
,− 1

2
)

(− 1
2
, 1
2
) ( 1

2
, 1
2
)



Modulo Operation

• Modulo operation with respect to
lattice Λ is just the residual
quantization error,

[x] mod Λ = x−QΛ(x) .

• Mimics the role of mod q in q-ary
alphabet.

• Distributive Law:
[

x1 + [x2] mod Λ
]

mod Λ

= [x1 + x2] mod Λ
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Modulo Operation

• Modulo operation with respect to
lattice Λ is just the residual
quantization error,

[x] mod Λ = x−QΛ(x) .

• Mimics the role of mod q in q-ary
alphabet.

• Distributive Law:
[

x1 + [x2] mod Λ
]

mod Λ

= [x1 + x2] mod Λ

mod Λ



mod Λ AWGN Channel

w E
x

z
y

mod Λ
ỹ

D ŵ

• Codebook lives on Voronoi region V of coarse lattice Λ.

• Take mod Λ of received signal prior to decoding.

• What is the capacity of the mod Λ channel?
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mod Λ AWGN Channel

w E
x

z
y

mod Λ
ỹ

D ŵ

• Codebook lives on Voronoi region V of coarse lattice Λ.

• Take mod Λ of received signal prior to decoding.

• What is the capacity of the mod Λ channel?

Using random i.i.d. code drawn over V: C =
1

n
max
p(x)

I(x; ỹ)



mod Λ AWGN Channel Capacity

w E
x

z
y

mod Λ
ỹ

D ŵ

nC = max
p(x)

I(x; ỹ)

= max
p(x)

(

h(ỹ)− h(ỹ|x)
)



mod Λ AWGN Channel Capacity

w E
x

z
y

mod Λ
ỹ

D ŵ

nC = max
p(x)

I(x; ỹ)

= max
p(x)

(

h(ỹ)− h(ỹ|x)
)

= max
p(x)

(

h(ỹ)− h
(

[z] mod Λ
))

Distributive Law



mod Λ AWGN Channel Capacity

w E
x

z
y

mod Λ
ỹ

D ŵ

nC = max
p(x)

I(x; ỹ)

= max
p(x)

(

h(ỹ)− h(ỹ|x)
)

= max
p(x)

(

h(ỹ)− h
(

[z] mod Λ
))

Distributive Law

≥ max
p(x)

(

h(ỹ)− h(z)
)

Point Symmetry of Voronoi Region



mod Λ AWGN Channel Capacity

w E
x

z
y

mod Λ
ỹ

D ŵ

nC = max
p(x)

I(x; ỹ)

= max
p(x)

(

h(ỹ)− h(ỹ|x)
)

= max
p(x)

(

h(ỹ)− h
(

[z] mod Λ
))

Distributive Law

≥ max
p(x)

(

h(ỹ)− h(z)
)

Point Symmetry of Voronoi Region

= max
p(x)

(

h(ỹ)−
n

2
log(2πeN)

)

Entropy of Gaussian Noise



mod Λ AWGN Channel Capacity

w E
x

z
y

mod Λ
ỹ

D ŵ

• Channel output entropy is equal to the logarithm of the Voronoi
region volume if it is uniform over V:

h(ỹ) = log(Vol(V)) if ỹ ∼ Unif(V)

• ỹ = [x+ z] mod Λ is uniform over V if x is uniform over V.

• Random i.i.d. coding over the Voronoi region V can achieve:

R =
1

n
log(Vol(V)) −

1

2
log(2πeN)



Power Constraints and Second Moments

w E
x

z
y

mod Λ
ỹ

D ŵ

• Must scale lattice Λ so that the uniform distribution over the
Voronoi region V meets the power constraint P .

• Set second moment σ2
Λ =

1

nVol(V)

∫

V
‖x‖2dx equal to P .



Power Constraints and Second Moments

w E
x

z
y

mod Λ
ỹ

D ŵ

• Must scale lattice Λ so that the uniform distribution over the
Voronoi region V meets the power constraint P .

• Set second moment σ2
Λ =

1

nVol(V)

∫

V
‖x‖2dx equal to P .

Normalized Second Moment: G(Λ) =
σ2
Λ

(Vol(V))2/n

=⇒
1

n
log(Vol(V)) =

1

2
log

(

σ2
Λ

G(Λ)

)

=
1

2
log

(

P

G(Λ)

)



mod Λ AWGN Channel Capacity

w E
x

z
y

mod Λ
ỹ

D ŵ

• Random i.i.d. coding over the Voronoi region V can achieve:

C ≥
1

n
log(Vol(V))−

1

2
log(2πeN)

=
1

2
log

(

P

G(Λ)

)

−
1

2
log(2πeN)

=
1

2
log

(

P

N

)

−
1

2
log(2πeG(Λ))



What is G(Λ)?

w E
x

z
y

mod Λ
ỹ

D ŵ

• The normalized second moment G(Λ) is a dimensionless quantity
that captures the shaping gain.

• Integer lattice is not so bad, G(Zn) = 1/12.

• Capacity under mod Z
n is at least

C ≥
1

2
log

(

P

N

)

−
1

2
log

(

2πe

12

)

≈
1

2
log

(

P

N

)

− 0.255



Asymptotically Good G(Λ)

Theorem (Zamir-Feder-Poltyrev ’94)

There exists a sequence of lattices Λ(n) such that lim
n→∞

G(Λ(n)) =
1

2πe
.

n = 1 n = 2

· · ·

n→∞

• Best possible normalized second moment is that of a sphere.

• Using a sequence Λ(n) with an asymptotically good G(Λ(N)) allows
to approach

R =
1

2
log

(

P

N

)

−
1

2
log

(

2πe

2πe

)

=
1

2
log

(

P

N

)



Asymptotically Good G(Λ)

• Can actually get this with a linear code tiled over Zn (see, for
instance, Erez-Litsyn-Zamir ’05.)

• Many works looking at this from different perspectives.

• We will just assume existence.



Properties of Random Linear Codes

Recall the two key properties of random linear codes G from earlier:

Codeword Properties

1. Marginally uniform over Fn
q . For a given message w 6= 0, the

codeword x = Gw looks like an i.i.d. uniform sequence.

P{x = x} =
1

qn
for all x ∈ F

n
q

2. Pairwise independent. For w1,w2 6= 0, w1 6= w2, codewords x1,x2

are independent.

P{x1 = x1,x2 = x2} =
1

q2n
= P{x1 = x1}P{x2 = x2}



Linear Codes for mod Λ Channels

• Instead of an “inner” random
codes, we can use a q-ary linear
code.

• This is exactly a nested lattice.

• Each codeword has a uniform
marginal distribution over the
grid.

• Rate loss due to finite
constellation which goes to 0 as
q →∞.

• Codewords are pairwise
independent so we can apply the
union bound.

0 1 2 3 4 · · · q − 1

0

1

2

3

4

...

q − 1

Fq

Fq

(− 1
2
,− 1

2
) ( 1

2
,− 1

2
)

(− 1
2
, 1
2
) ( 1

2
, 1
2
)

x = [γGw] mod Z
n



Linear Codes for mod Λ Channels

• General coarse lattice Λ = BZ
n.

• First, apply generator matrix for
linear code Gw. Then scale
down by γ and tile over Zn.

• Multiply by B and apply mod Λ
to get codebook.

• As q gets large, each codeword’s
marginal distribution looks
uniform over V.

• Codewords are pairwise
independent so we can apply the
union bound.

x = [BγGw] mod Λ



MMSE Scaling

• Erez-Zamir ’04: Prior to taking mod Λ, scale by α.

ỹ = [αy] mod Λ

= [αx+ αz] mod Λ

= [x+ αz− (1− α)x] mod Λ

Effective Noise

• For now, ignore that the effective noise is not independent of the
codeword. Effective noise variance NEFFEC = α2N + (1− α)2P .

• Optimal choice of α is the MMSE coefficient αMMSE =
P

N + P
.

NEFFEC = α2
MMSEN + (1− αMMSE)

2P =
PN

N + P

C =
1

2
log

(

P

NEFFEC

)

=
1

2
log

(

1 +
P

N

)



Dithering

• Now the noise is dependent on the
codeword.

• Dithering can solve this problem (just as in
the discrete case).

• Map message w to a lattice codeword t.

• Generate a random dither vector d
uniformly over V.

• Transmitter sends a dithered codeword:

x = [t+ d] mod Λ

• x is now independent of the codeword t.
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Decoding – Remove Dither First

• Transmitter sends dithered codeword x = [t+ d] mod Λ.

• After scaling the channel output y by α, the decoder subtracts the
dither d.

ỹ = [αy − d] mod Λ

= [αx+ αz− d] mod Λ

= [x− d+ αz− (1− α)x] mod Λ

=
[

[t+ d] mod Λ− d+ αz− (1− α)x
]

mod Λ

= [t+ αz− (1− α)x] mod Λ Distributive Law

• Effective noise is now independent from the codeword t.

• By the probabilistic method, (at least) one good fixed dither exists.
No common randomness necessary.



Summary

• Linear code embedded in the integer lattice:

R =
1

2
log

(

P

N

)

−
1

2
log

(

2πe

12

)

• Linear code embedded in the integer lattice, MMSE scaling:

R =
1

2
log

(

1+
P

N

)

−
1

2
log

(

2πe

12

)

• Linear code embedded in a good shaping lattice, MMSE scaling:

R =
1

2
log

(

1+
P

N

)

Theorem (Erez-Zamir ’04)

Nested lattice codes can achieve the AWGN capacity.



Gaussian Multiple-Access Channel

Rate Region

R1 <
1

2
log

(

1 +
P1

N

)

R2 <
1

2
log

(

1 +
P2

N

)

R1 +R2 <
1

2
log

(

1 +
P1 + P2

N

)

w1 E1
x1

w2 E2
x2

z

y
D

ŵ1

ŵ2

Power constraints P1, P2. Noise variance N .

Successive Cancellation

R2

R1

(

1

2
log

(

1 +
P1

N + P2

)

,
1

2
log

(

1 +
P2

N

))

Corner Point

1. Decode x1, treating x2 as noise.

2. Subtract x1 from y.

3. Decode x2.



Lattice Achievability “Recipe” – Multiple-Access Corner Point

Codebook Generation

Select a nested lattice code:

• Coarse lattice Λ = BZ
n for shaping.

• Fine lattice from q-ary linear code G

for coding.

Encoding

Tx 1

Tx 2
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Lattice Achievability “Recipe” – Multiple-Access Corner Point

Receiver observes y = x1 + x2 + z.

Decoding

• Scale by α.

• Subtract dither d1.

• Take mod Λ.

• Decode to nearest codeword.

[αy − d1] mod Λ

= [α(x1 + x2 + z)− d1] mod Λ

= [x1 − d1 + αz+ αx2 − (1− α)x1] mod Λ

=
[

[t1 + d1] mod Λ− d1 + αz+ αx2 − (1− α)x1

]

mod Λ

= [t1 + αz+ αx2 − (1− α)x1]

Effective Noise

Rx



Lattice Achievability “Recipe” – Multiple-Access Corner Point

• Effective noise after scaling is NEFFEC = α2(N + P2) + (1− α)2P1.

• Minimized by setting α to be the MMSE coefficient:

αMMSE =
P1

N + P1 + P2

• Plugging in, we get

NEFFEC =
(N + P2)P1

N + P1 + P2

• Resulting rate is

R =
1

2
log

(

P1

NEFFEC

)

=
1

2
log

(

1 +
P1

N + P2

)

• To obtain different rates for x1 and x2, use nested linear codes G1

and G2 inside Voronoi region V.



AWGN Two-Way Relay Channel – Symmetric Rates
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AWGN Two-Way Relay Channel – Symmetric Rates

zMAC
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ŵ1

• Equal power constraints P .

• Equal noise variances N .

• Equal rates R.



AWGN Two-Way Relay Channel – Symmetric Rates

zMAC

yMAC

Relay

xBC

z2z1

User 1

x1w1

ŵ2

User 2

x2 w2

ŵ1

• Equal power constraints P .

• Equal noise variances N .

• Equal rates R.

• Upper Bound:

R ≤
1

2
log

(

1 +
P

N

)

• Decode-and-Forward: Relay decodes w1,w2 and transmits w1 ⊕w2.

R =
1

4
log

(

1 +
2P

N

)

• Compress-and-Forward: Relay transmits quantized y.

R =
1

2
log

(

1 +
P

N

P

3P +N

)



AWGN Two-Way Relay Channel – Symmetric Rates
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Decoding the Sum of Lattice Codewords

Encoders use the same nested
lattice codebook.

Transmit lattice codewords:

x1 = t1

x2 = t2

t1 E1
x1

t2 E2
x2

z

y
D v̂

v = [t1 + t2] mod Λ

Decoder recovers modulo sum.

[y] mod Λ

= [x1 + x2 + z] mod Λ

= [t1 + t2 + z] mod Λ

=
[

[t1 + t2] mod Λ + z
]

mod Λ Distributive Law

= [v + z] mod Λ

R =
1

2
log

(

P

N

)



Decoding the Sum of Lattice Codewords – MMSE Scaling

Encoders use the same nested
lattice codebook.

Transmit dithered codewords:

x1 = [t1 + d1] mod Λ

x2 = [t2 + d2] mod Λ

t1 E1
x1

t2 E2
x2

z

y
D v̂

v = [t1 + t2] mod Λ

Decoder scales by α, removes dithers, recovers modulo sum.

[αy − d1 − d2] mod Λ

= [α(x1 + x2 + z)− d1 − d2] mod Λ

= [x1 + x2 − (1− α)(x1 + x2) + αz− d1 − d2] mod Λ

=
[

[t1 + t2] mod Λ− (1− α)(x1 + x2) + αz
]

mod Λ

= [v − (1− α)(x1 + x2) + αz] mod Λ

Effective Noise NEFFEC = (1− α)22P + α2N



Decoding the Sum of Lattice Codewords – MMSE Scaling

• Effective noise after scaling is NEFFEC = (1− α)22P + α2N .

• Minimized by setting α to be the MMSE coefficient:

αMMSE =
2P

N + 2P

• Plugging in, we get

NEFFEC =
2NP

N + 2P

• Resulting rate is

R =
1

2
log

(

P

NEFFEC

)

=
1

2
log

(

1

2
+

P

N

)

• Getting the full “one plus” term is an open challenge. Does not
seem possible with nested lattices.



From Messages to Lattice Points and Back

• Map messages to lattice points

t1 = φ(w1) = [BγGw1] mod Λ

t2 = φ(w2) = [BγGw2] mod Λ

• Mapping between finite field messages and lattice codewords
preserves linearity:

φ−1
(

[t1 + t2] mod Λ
)

= w1 ⊕w2

• This means that after decoding a mod Λ equation of lattice points
we can immediately recover the finite field equation of the messages.
See Nazer-Gastpar ’11 for more details.



Finite Field Computation over a Gaussian MAC

Map messages to lattice points:

t1 = φ(w1)

t2 = φ(w2)

Transmit dithered codewords:

x1 = [t1 + d1] mod Λ

x2 = [t2 + d2] mod Λ

w1 E1
x1

w2 E2
x2

z

y
D û

u = w1 ⊕w2

• If decoder can recover [t1 + t2] mod Λ, it also can get the sum of
the messages

w1 ⊕w2 = φ−1
(

[t1 + t2] mod Λ
)

.

• Achievable rate R =
1

2
log

(

1

2
+

P

N

)

.



AWGN Two-Way Relay Channel – Symmetric Rates

w1Has

Wants w2 w1

Has

Wants

w2Relay

• Equal power constraints P .

• Equal noise variances N .

• Equal rates R.

• Upper Bound:

R ≤
1

2
log

(

1 +
P

N

)

• Compute-and-Forward: Relay decodes w1 ⊕w2 and retransmits.

R =
1

2
log

(

1

2
+

P

N

)

• Wilson-Narayanan-Pfister-Sprintson ’10: Applies nested lattice codes
to the two-way relay channel.



AWGN Two-Way Relay Channel – Symmetric Rates
zMAC

yMAC

Relay

xBC

z2z1

User 1

x1w1

ŵ2

User 2

x2 w2

ŵ1

• Equal power constraints P .

• Equal noise variances N .

• Equal rates R.

• Upper Bound:

R ≤
1

2
log

(

1 +
P

N

)

• Compute-and-Forward: Relay decodes w1 ⊕w2 and retransmits.

R =
1

2
log

(

1

2
+

P

N

)

• Wilson-Narayanan-Pfister-Sprintson ’10: Applies nested lattice codes
to the two-way relay channel.



AWGN Two-Way Relay Channel – Symmetric Rates
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Compute-and-Forward Illustration

w2

w1
x1

x2

z

y
w1 ⊕w2



Compute-and-Forward Illustration

w2

w1
x1

x2

z

y
w1 ⊕w2



Random i.i.d. codes are not good for computation

2nR codewords each. 2n2R possible sums of codewords.
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Random i.i.d. codes are not good for computation

2nR codewords each. 2n2R possible sums of codewords.
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Unequal Power Constraints – Double Nesting

• What if the power constraints
are not equal?

• Idea from
Nam-Chung-Lee ’10:

• Draw the codewords from the
same fine lattice ΛFINE.

• Use two nested coarse lattices
Λ1 and Λ2 to enforce the
power constraints P1 and P2.
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Unequal Power Constraints – Double Nesting

• What if the power constraints
are not equal?

• Idea from
Nam-Chung-Lee ’10:

• Draw the codewords from the
same fine lattice ΛFINE.

• Use two nested coarse lattices
Λ1 and Λ2 to enforce the
power constraints P1 and P2.



Unequal Power Constraints – Double Nesting

t1 E1
x1

t2 E2
x2

z

y
D v̂

v = [t1 + t2] mod Λ2

• Encoder 1 sends x1 = [t1 + d1] mod Λ1. Coarse lattice Λ1 has
second moment P1.

• Encoder 2 sends x2 = [t2 + d2] mod Λ2. Coarse lattice Λ2 has
second moment P2 > P1.

• Decoder performs MMSE scaling, remove dithers, recovers mod Λ2

sum.

R1 =
1

2
log

(

P1

P1 + P2
+

P1

N

)

R2 =
1

2
log

(

P2

P1 + P2
+

P2

N

)



AWGN Two-Way Relay Channel

zMAC

yMAC

Relay

xBC

z2z1

User 1

x1w1

ŵ2

User 2

x2 w2

ŵ1

• User powers P1, P2.

• MAC noise variance NMAC.

• Relay power PBC .

• Broadcast noise variances

N1, N2.

Theorem (Nam-Chung-Lee ’10)

Capacity region is within 1/2 bit of:

R1 ≤ min

(

1

2
log

(

P1

P1 + P2

+
P1

NMAC

)

,
1

2
log

(

1 +
PBC

N2

))

R2 ≤ min

(

1

2
log

(

P2

P1 + P2

+
P2

NMAC

)

,
1

2
log

(

1 +
PBC

N1

))

Moreover, “constant gap” goes to zero as powers increase.



Multiple-Access Networks

w

Z2

Z1

Z3

ŵ

ŵ

ŵ

• Multicast

demands

• Multi-access

interference

• No broadcast

constraints

• Compute-and-forward is well-suited for multicasting over
multiple-access networks.

• Equal transmitter powers: Nazer-Gastpar ’07.

Unequal transmitter powers: Nam-Chung-Lee ’09.
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Many-to-One Interference Channel – Symmetric Very Strong Case

• Equal rates R.

• Only receiver 1 sees
interference:

y1 = x1 + β
K
∑

ℓ=2

xℓ + z1

• How big does β have to be to
achieve R = 1

2 log
(

1 + P
N

)

?
(i.e. “very strong” case)

w1 E1
x1

w2 E2
x2

β

wK EK
xK

β
.

.

.

.

.

.

z1
y1

z2
y2

zK
yK

D1 ŵ1

D2 ŵ2

DK ŵK

• Scheme A: Decode w2, . . . ,wK at receiver 1 and remove prior to
decoding w1.

R ≤
1

2(K − 1)
log

(

1 +
β2(K − 1)P

N + P

)

• Scheme B: Decode w2 ⊕ · · · ⊕wK at receiver 1 and remove prior to
decoding w1.



Many-to-One Interference Channel – Symmetric Very Strong Case

Encoders use the same nested
lattice codebook.

Transmit dithered codewords:

xℓ = [tℓ + dℓ] mod Λ

w1 E1
x1

w2 E2
x2

β

wK EK
xK

β
.

.

.

.

.

.

z1
y1

z2
y2

zK
yK

D1 ŵ1

D2 ŵ2

DK ŵK

Decoder scales by β−1, removes dithers, recovers modulo sum.

[

β−1y1 −
K
∑

ℓ=2

dℓ

]

mod Λ =

[ K
∑

ℓ=2

(xℓ − dℓ) + β−1(x1 + z1)

]

mod Λ

(Distributive Law) =

[

[

K
∑

ℓ=2

tℓ

]

mod Λ + β−1(x1 + z1)

]

mod Λ



Many-to-One Interference Channel – Symmetric Very Strong Case

[

β−1y1 −
K
∑

ℓ=2

dℓ

]

mod Λ =

[

[

K
∑

ℓ=2

tℓ

]

mod Λ + β−1(x1 + z1)

]

mod Λ

• Effective noise variance NEFFEC = β−2(P +N).

• Can decode mod Λ sum of lattice points at rate R = 1
2 log

( β2P
P+N

)

.

• Setting equal to “very strong” condition R = 1
2 log

(

1 + P
N

)

we get

β2 =
(P +N)2

PN

• How can we recover w1?

• We need to first subtract the real sum of the codewords. So far, we
only have the modulo-sum.



Successive Cancellation of Sums

• First, add back in dithers to get modulo sum of codewords:
[

[

K
∑

ℓ=2

tℓ

]

mod Λ +
[

K
∑

ℓ=2

dℓ

]

mod Λ

]

mod Λ =
[

K
∑

ℓ=2

xℓ

]

mod Λ



Successive Cancellation of Sums

• First, add back in dithers to get modulo sum of codewords:
[

[

K
∑

ℓ=2

tℓ

]

mod Λ +
[

K
∑

ℓ=2

dℓ

]

mod Λ

]

mod Λ =
[

K
∑

ℓ=2

xℓ

]

mod Λ

• Subtract from y1 to expose the coarse lattice point nearest to the
real sum

∑K
ℓ=2 xℓ:

β−1y1 −
[

K
∑

ℓ=2

xℓ

]

mod Λ = QΛ

(

K
∑

ℓ=2

xℓ

)

+ β−1(x1 + z1)

• Coarse lattice point easier to decode than fine lattice point:

QΛ

(

QΛ

(

K
∑

ℓ=2

xℓ

)

+ β−1(x1 + z1)

)

= QΛ

(

K
∑

ℓ=2

xℓ

)

w.h.p.



Successive Cancellation of Sums

• First, add back in dithers to get modulo sum of codewords:
[

[

K
∑

ℓ=2

tℓ

]

mod Λ +
[

K
∑

ℓ=2

dℓ

]

mod Λ

]

mod Λ =
[

K
∑

ℓ=2

xℓ

]

mod Λ

• Subtract from y1 to expose the coarse lattice point nearest to the
real sum

∑K
ℓ=2 xℓ:

β−1y1 −
[

K
∑

ℓ=2

xℓ

]

mod Λ = QΛ

(

K
∑

ℓ=2

xℓ

)

+ β−1(x1 + z1)

• Coarse lattice point easier to decode than fine lattice point:

QΛ

(

QΛ

(

K
∑

ℓ=2

xℓ

)

+ β−1(x1 + z1)

)

= QΛ

(

K
∑

ℓ=2

xℓ

)

w.h.p.

• Finally, get back the real sum

[

K
∑

ℓ=2

xℓ

]

mod Λ +QΛ

(

K
∑

ℓ=2

xℓ

)

=

K
∑

ℓ=2

xℓ



Successive Cancellation of Sums

• We now have the sum of interfering codewords and can cancel them
out:

y1 − β

K
∑

ℓ=2

xℓ = x1 + z1

• Can apply standard MMSE lattice decoding to recover lattice point
t1 and then map back to w1.

• Overall, structured coding permits

β2 ≥
(P +N)2

PN

• Compare to decoding interfering codewords in their entirety:

β2 ≥

(

(1 + P
N )K−1 − 1

)

(N + P )

(K − 1)P

• Originally shown in Sridharan-Jafarian-Vishwanath-Jafar ’08 using
spherical shaping region. Nested lattice scheme from Nazer ’11.



Many-to-One Interference Channel – Approximate Capacity

w1 E1
x1 h11

w2 E2
x2

h12

...
...

wK EK
xK hKK

h1K

h22

z1
y1

z2
y2

zK
yK

D1 ŵ1

D2 ŵ2

DK ŵK

Lattice Codes

...
...

• Deterministic model by Avestimehr-Diggavi-Tse ’11 shows how to
decompose by signal scale.

Theorem (Bresler-Parekh-Tse ’10)

Lattices codes combined with the deterministic model can approach
the capacity region to within (3K + 3)(1 + log(K + 1)) bits per user.



Interference Channel – Symmetric Very Strong Case

w1 E1
x1

w2 E2
x2

...

wK EK
xK

H

z1
y1

z2
y2

zK
yK

D1 ŵ1

D2 ŵ2

...

DK ŵK

• Equal rates R. How big does β have to be to achieve
R = 1

2 log
(

1 + P
N

)

? (i.e. “very strong” case)

• Can use the many-to-one decoder at every receiver to get

β2 ≥
(P +N)2

PN

• What about asymmetric interference channels?



Interference Channel – Symmetric Very Strong Case

w1 E1
x1

w2 E2
x2

...

wK EK
xK

1 β · · · β

β 1 · · · β
...

...
. . .

...

β β · · · 1

z1
y1

z2
y2

zK
yK

D1 ŵ1

D2 ŵ2

...

DK ŵK

• Equal rates R. How big does β have to be to achieve
R = 1

2 log
(

1 + P
N

)

? (i.e. “very strong” case)

• Can use the many-to-one decoder at every receiver to get

β2 ≥
(P +N)2

PN

• What about asymmetric interference channels?



Interference Channel

w1 E1
x1

w2 E2
x2

...

wK EK
xK

H

z1
y1

z2
y2

zK
yK

D1 ŵ1

D2 ŵ2

...

DK ŵK

• Not clear how to map to a deterministic model using lattices.

• “Real” interference alignment scheme of Motahari et al. ’08 uses a
lattice structure to get K/2 DoF (up to a set of measure one)

• Some special cases at finite SNR: Jafarian-Viswanath ’09,’10,

Ordentlich-Erez ’11

• Much more known for time-varying channels: Cadambe-Jafar ’08,

Nazer et al. ’11, much more



Summary

• So far we have seen that lattices are very effective for scenarios
where there is a single interference bottleneck.

• Also effective for multiple bottlenecks but less is known.

• We have so far assumed that the fading coefficients are known at
the transmitters.

• In general, transmitters may not have access to channel state
information.



Computation over Fading Channels

Transmitters do not know
channel realization.

Encoders use the same nested
lattice codebook.

Transmit dithered codewords:

xℓ = [tℓ + dℓ] mod Λ

t1 E1
x1

h1

t2 E2
x2 h2

tK EK
xK

hK...

z

y
D v̂

v =
[

K
∑

ℓ=1

aℓtℓ

]

mod Λ

• Decoder removes dithers and recovers integer combination

v =
[

K
∑

ℓ=1

aℓtℓ

]

mod Λ

• Receiver can use its knowledge of the channel gains to match the
equation coefficients aℓ to the channel coefficients hℓ.



Distributive Law

• Distributive Law also holds for integer combinations. Let a, b ∈ Z.

[

a[x1] mod Λ + b[x2] mod Λ

]

mod Λ

=

[

a
(

x1 −QΛ(x1)
)

+ b
(

x2 −QΛ(x2)
)

]

mod Λ

=

[

ax1 + bx2 − aQΛ(x1)− bQΛ(x2)

]

mod Λ

= [ax1 + bx2] mod Λ

• Last step follows since since aQΛ(x1) and bQΛ(x2) are elements of
the lattice Λ.



Computation over Fading Channels

• Transmit dithered codewords xℓ = [tℓ + dℓ] mod Λ

• Decoder removes dithers and recovers integer combination

[

y−
K
∑

ℓ=1

aℓdℓ

]

mod Λ

=
[

K
∑

ℓ=1

hℓxℓ + z−
K
∑

ℓ=1

aℓdℓ

]

mod Λ

=
[

K
∑

ℓ=1

aℓ(xℓ − dℓ) +

K
∑

ℓ=1

(hℓ − aℓ)xℓ + z
]

mod Λ

=

[

[

K
∑

ℓ=1

aℓtℓ

]

mod Λ +

K
∑

ℓ=1

(hℓ − aℓ)xℓ + z

]

mod Λ Distributive Law

Effective Noise



Computation over Fading Channels – Effective Noise

• Effective noise due to mismatch between channel coefficients
h = [h1 · · · hK ]T and equation coefficients a = [a1 · · · aK ]T .

NEFFEC = N + P‖h− a‖2

R =
1

2
log

(

P

N + P‖h− a‖2

)



Computation over Fading Channels – Effective Noise

• Effective noise due to mismatch between channel coefficients
h = [h1 · · · hK ]T and equation coefficients a = [a1 · · · aK ]T .

NEFFEC = N + P‖h− a‖2

R =
1

2
log

(

P

N + P‖h− a‖2

)

• Can do better with MMSE scaling.

NEFFEC = α2N + P‖αh − a‖2

R = max
α

1

2
log

(

P

α2N + P‖αh− a‖2

)

=
1

2
log

(

N + P‖h‖2

N‖a‖2 + P (‖h‖2‖a‖2 − (hTa)2)

)

• See Nazer-Gastpar ’11 for more details.



Computation over Fading Channels – Special Cases

• The rate expression simplifies in some special cases.

R =
1

2
log

(

N + P‖h‖2

N‖a‖2 + P (‖h‖2‖a‖2 − (hTa)2)

)

• Integer channels: h = a.

R =
1

2
log

(

1

‖a‖2
+

P

N

)

• Recovering a single message: Set a = δm, the mth unit vector.

R =
1

2
log

(

1 +
h2mP

N + P
∑

ℓ 6=m h2ℓ

)



Finite Field Computation over Fading Channels

Transmitters do not know
channel realization.

Encoders use the same nested
lattice codebook.

Transmit dithered codewords:

xℓ = [tℓ + dℓ] mod Λ

w1 E1
x1

h1

w2 E2
x2 h2

wK EK
xK

hK...

z

y
D û

u =

K
⊕

ℓ=1

aℓwℓ

• Recall that mapping tℓ = φ(wℓ) between messages and lattice
points preserves linearity.

φ−1

(

[

K
∑

ℓ=1

aℓtℓ

]

mod Λ

)

=
[

K
∑

ℓ=1

aℓwℓ

]

mod q =

K
⊕

ℓ=1

aℓwℓ

• Digital interface that fits well with network coding.



Computation Coding

All users pick the same nested lattice code:



Computation Coding

Choose messages over field wℓ ∈ F
k
q :

w2

w1



Computation Coding

Map wℓ to lattice point tℓ = φ(wℓ):

w2

w1



Computation Coding

Transmit lattice points over the channel:

w2

w1
x1

h1

x2
h2

z

y

h = [ 1.4 2.1 ]

a = [ 2 3 ]



Computation Coding

Transmit lattice points over the channel:

w2

w1
x1

h1

x2
h2

z

y

h = [ 1.4 2.1 ]

a = [ 2 3 ]



Computation Coding

Lattice codewords are scaled by channel coefficients:

w2

w1
x1

h1

x2
h2

z

y

h = [ 1.4 2.1 ]

a = [ 2 3 ]



Computation Coding

Scaled codewords added together plus noise:

w2

w1
x1

h1

x2
h2

z

y

h = [ 1.4 2.1 ]

a = [ 2 3 ]



Computation Coding

Scaled codewords added together plus noise:

w2

w1
x1

h1

x2
h2

z

y

h = [ 1.4 2.1 ]

a = [ 2 3 ]



Computation Coding

Extra noise penalty for non-integer channel coefficients:

w2

w1
x1

h1

x2
h2

z

y

h = [ 1.4 2.1 ]

a = [ 2 3 ]

Effective noise: N + P‖h− a‖2



Computation Coding

Scale output by α to reduce non-integer noise penalty:

w2

w1
x1

h1

x2
h2

z

y

αh = [ α1.4 α2.1 ]

a = [ 2 3 ]

Effective noise: α2N + P‖αh− a‖2



Computation Coding

Scale output by α to reduce non-integer noise penalty:

w2

w1
x1

h1

x2
h2

z

y

αh = [ α1.4 α2.1 ]

a = [ 2 3 ]

Effective noise: α2N + P‖αh− a‖2



Computation Coding

Decode to closest lattice point:

w2

w1
x1

h1

x2
h2

z

y

αh = [ α1.4 α2.1 ]

a = [ 2 3 ]

Effective noise: α2N + P‖αh− a‖2



Computation Coding

Compute sum of lattice points modulo the coarse lattice:

w2

w1
x1

h1

x2
h2

z

y

αh = [ α1.4 α2.1 ]

a = [ 2 3 ]

Effective noise: α2N + P‖αh− a‖2



Computation Coding

Map back to equation of message symbols over the field:

w2

w1
x1

h1

x2
h2

z

y

αh = [ α1.4 α2.1 ]

a = [ 2 3 ]

Effective noise: α2N + P‖αh− a‖2

K
⊕

ℓ=1

aℓwℓ



Computation over Fading Channels – Multiple Receivers

w1 E1
x1

w2 E2
x2

...

wK EK
xK

H

z1
y1

z2
y2

zK
yK

D1 û1

D2 û2

...

DK ûK

• Equal rates R. No channel state information (CSI) at transmitters.
• Receivers use their CSI to select coefficients, decode linear equation

uk =
K
⊕

ℓ=1

akℓwℓ

• Reliable decoding possible if

R < min
k:akℓ 6=0

1

2
log

(

N + P‖hk‖
2

N‖ak‖2 + P (‖hk‖2‖ak‖2 − (hT
k ak)

2)

)



Case Study – Hadamard Relay Network

w1 E1
x1

w2 E2
x2

...

wK EK
xK

H

z1
y1

z2
y2

zK
yK

R1

x1R

R2

x2R

...

RK

xKR

z1R
y1R

z2R
y2R

zKR

yKR

D

ŵ1

ŵ2

...
ŵK

• Equal rates R. H is a Hadamard matrix, HHT = KI

Upper Bound Compute-and-Forward

1

2
log

(

1 +
P

N

)

1

2
log

(

1

K
+

P

N

)

Compress-and-Forward Decode-and-Forward

1

2
log

(

1 +
P

N

P

N +KP

)

1

2K
log

(

1 +
KP

N

)



Case Study – Hadamard Relay Network

w1 E1
x1

w2 E2
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wK EK
xK

1 1 · · · 1
1 1 · · · −1
...

...
. . .

...

1 −1 · · · −1
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zK
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R1

x1R
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RK

xKR

z1R
y1R

z2R
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yKR

D

ŵ1

ŵ2

...
ŵK

• Equal rates R. H is a Hadamard matrix, HHT = KI

Upper Bound Compute-and-Forward

1

2
log

(

1 +
P

N

)

1

2
log

(

1

K
+

P

N

)
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Computation over Fading Channels – No CSIT
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• Three transmitters that
do not know the fading
coefficients.

• Average rate plotted for
i.i.d. Gaussian fading.

Relay either decodes some
linear function of messages
or an individual message.
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Computation over Fading Channels – No CSIT

• Receiver observes y = x1 + hx2 + z.
• Recovers aw1 ⊕ bw2 for a, b 6= 0.
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• Receiver observes y = x1 + hx2 + z.
• Recovers aw1 ⊕ bw2 for a, b 6= 0.
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Rate-Constrained Cellular Backhaul

Remote
Central
Processor

RhaulRhaul Rhaul

• Well-studied cellular model: Wyner ’94, Shamai-Wyner ’97,

Sanderovich et al. ’09
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Structured Superposition
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Nazer et al. ’09: Each cell-site sees either hE or hO which is strictly
better than h.
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Structured Superposition: Performance

SNR = 10dB, Backhaul Rate Rhaul = 2.5
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• Compress-and-forward rate taken from Sanderovich et al. ’09

• Layering can reduce “non-integer loss.”



Structured Superposition: Performance

SNR = 15dB, Backhaul Rate Rhaul = 3.5
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Structured Superposition: Performance

SNR = 20dB, Backhaul Rate Rhaul = 4.5
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Diophantine Approximation

• Choose equation coefficients to maximize rate:

RCOMP = max
a∈ZK

max
α

1

2
log

(

P

α2N + P‖αh− a‖2

)

• Equivalently min
a∈ZK

min
α

α2N + P‖αh − a‖2.

• Closely connected to Diophantine approximation, i.e. approximating
irrationals with rationals.

• Niesen-Whiting ’11 shows that DoF = lim
P→∞

RCOMP
1
2 log(1 + P )

≤ 2

• Also shows that by combining compute-and-forward with
interference alignment can get DoF to K.



Dirty Paper Coding

s is interference known
noncausally to the encoder.

Assume s i.i.d. Gaussian,
very large variance PS .

Erez-Shamai-Zamir ’05:

Encoder subtracts αs, dithers,
and takes mod Λ.

x = [t− αs+ d] mod Λ

w E
x

s z

y
D ŵ

Decoder scales by α, removes dither, takes mod Λ, and recovers t.
Interference is cancelled.

[αy − d] mod Λ = [x+ αs− d+ z− (1− α)x] mod Λ

=
[

[t− αs+ d] mod Λ + αs− d+ z− (1− α)x
]

mod Λ

=
[

t+ z− (1− α)x
]

mod Λ
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Dirty Gaussian Multiple-Access Channel

w1 E1
x1

s1

w2 E2
x2

s2

z

y
D ŵ1, ŵ2

Philosof-Zamir-Erez-Khisti ’11:

• Encoder 1 knows interference s1.

• Encoder 2 knows interference s2.

• Need to cancel out interference in a distributed fashion.

• Assume i.i.d. Gaussian interference with very large variance PS .
Random i.i.d. methods yield rate that goes to 0 as PS goes to
infinity.



Dirty Gaussian Multiple-Access Channel

Subtract (part of) the interference signals ahead of time:

x1 = [t1 − αs1 + d1] mod Λ

x2 = [t2 − αs2 + d2] mod Λ

Decoder removes dithers:

[αy − d1 − d2] mod Λ

= [α(x1 + x2 + s1 + s2 + z)− d1 − d2] mod Λ

= [x1 + x2 + α(s1 + s2)− (1− α)(x1 + x2) + αz) − d1 − d2] mod Λ

=
[

t1 + t2 + (1− α)(x1 + x2) + αz
]

mod Λ

Select α = 2P/(2P +N) to obtain

R1 +R2 ≤

[

1

2
log

(

1

2
+

P

N

)

]+



Secrecy

• He-Yener ’09: Lattice codes
are useful for physical-layer
secrecy.

• Random i.i.d. codes achieve
0 secure-degrees-of-freedom.

• Basic result: Random lattice
codes achieve positive
secure-degrees-of-freedom.

Two-Way Relay Channel

w1Has

Wants w2 w1

Has

Wants

w2RelayUntrusted
Relay

Interference Channel

1

2

K

Eavesdropper

1

2

K



Relaying

w E
x

zR

R
xR z

y
D ŵ

What can we prove with lattice codes for the AWGN relay channel?

• The full decode-and-forward rate can be achieved.
See Song-Devroye ’10, Nockleby-Aazhang ’11.

• The full compress-and-forward rate can be achieved.
See Song-Devroye ’11.



Distributed Source Coding: “Gaussian Körner-Marton Problem”

• Correlated Gaussian sources.
(

s1
s2

)

∼ N

(

0,

[

1 ρ
ρ 1

])

• Decoder wants the difference.

• Nested lattices are also good
for Gaussian source coding.

s1 E1
R1

s2 E2
R2

D û

u = s1 − s2

D = 1
nE‖û− u‖2
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Distributed Source Coding: “Gaussian Körner-Marton Problem”

• Correlated Gaussian sources.
(

s1
s2

)

∼ N

(

0,

[

1 ρ
ρ 1

])

• Decoder wants the difference.

• Nested lattices are also good
for Gaussian source coding.

• Krithivasan-Pradhan ’09:

with high probability, s1 and
s2 will land near the same
coarse lattice point.

• Only need to send:

t1 =
[

QΛFINE
(s1)

]

mod Λ

t2 =
[

QΛFINE
(s2)

]

mod Λ

s1 E1
R1

s2 E2
R2

D û

u = s1 − s2

D = 1
nE‖û− u‖2



Three-User Gaussian Distributed Source Coding

• Correlated Gaussian sources.
(

s1
s2

)

∼ N

(

0,

[

1 ρ
ρ 1

])

• Third source is the difference:

s3 = s1 − s3

• Structured codes make new
rate points accessible in
distributed Gaussian source
coding.

s1 E1
R1

s2 E2
R2

s3 E3
R3

D

ŝ1
ŝ2
ŝ3

D1 =
1
nE‖ŝ1 − s1‖

2

D2 =
1
nE‖ŝ2 − s2‖

2

D3 =
1
nE‖ŝ3 − s3‖

2

• Example: Set R1 = 0 and R2 = 0.

• See Tavildar-Wagner-Viswanath ’10, Krithivasan-Pradhan ’09,

Maddah-Ali–Tse ’10.



Practical Implementations of Compute-and-Forward

• Feng-Silva-Kschischang ’10 develop practical nested lattice codes
that work quite well for blocklengths as small as 100.

• Hern and Narayanan ’10 develop multi-level codes to use fields of
size 2k.

• Ordentlich and Erez ’10 propose mapping by set partitioning to go
from binary codewords to higher order constellations.

• Further emerging work includes Osmane and Belfiore ’11



Concluding Remarks

• Codes with algebraic structure lead to the highest known achievable
rates for some communication scenarios of great interest.

• This applies to source coding, channel coding, and also joint
source-channel coding.

• We have discussed a set of tools to apply and analyze random linear
and random lattice codes to communication network scenarios.

• However, there is currently no general unified theory of how to
generally use algebraic structure in the context of network
information theory.
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D. Gündüz, O. Simeone, A. J. Goldsmith, H. V. Poor, and S. Shamai; , “Multiple Multicasts With the Help of a

Relay,” IEEE Transactions on Information Theory, vol. 56, no.12, pp. 6142–6158, Dec. 2010

J. Goseling, M. Gastpar, and J. Weber, “Line and lattice networks under deterministic interference models,” IEEE

Transactions on Information Theory, vol. 57, no. 5, pp. 3080–3099, May 2011.



References – Physical-Layer Network Coding

Y. Wu, P. A. Chou, and S.-Y. Kung, “Information exchange in wireless networks with network coding and

physical-layer broadcast,” Microsoft Research, Redmond, WA, Tech. Rep. MSR-TR-2004-78, Aug. 2004.

S. Zhang, S. Liew, and P. Lam, “Hot topic: Physical-layer network coding,” in Proc. ACM Int. Conf. Mobile

Comp. Netw., Los Angeles, CA, Sep. 2006.

B. Nazer and M. Gastpar, “Computing over multiple-access channels with connections to wireless network

coding,” in Proc. IEEE Int. Symp. Inf. Theory, Seattle, WA, Jul. 2006.

P. Popovski and H. Yomo, “Bi-directional amplification of throughput in a wireless multi-hop network,” in Proc.

IEEE Veh. Tech. Conf., Melbourne, Australia, May 2006.

S. Katti, S. Gollakota, and D. Katabi, “Embracing wireless interference: Analog network coding,” ACM

SIGCOMM, Kyoto, Japan, August 2007.

M. P. Wilson, K. Narayanan, H. Pfister, and A. Sprintson, “Joint physical layer coding and network coding for

bidirectional relaying,” IEEE Trans. Inf. Theory, vol. 11, no. 56, pp. 5641–5654, Nov. 2010.

W. Nam, S.-Y. Chung, and Y. H. Lee, “Capacity of the Gaussian two-way relay channel to within 1/2 bit,” IEEE

Transactions on Information Theory, vol. 56, no. 11, pp. 5488–5494, Nov. 2010.

W. Nam, S.-Y. Chung, and Y. H. Lee, “Nested Lattice Codes for Gaussian Relay Networks with Interference,” in

IEEE Transactions on Information Theory, Submitted February 2009. http://arxiv.org/abs/0902.2436

I. Maric, A. Goldsmith, and M. Médard, “Analog network coding in the high-SNR regime,” in Proceedings of the

IEEE Wireless Network Coding Conference (WiNC 2010), (Boston, MA), June 2010.

B. Nazer and M. Gastpar, “Reliable physical layer network coding,” Proceedings of the IEEE, vol. 99, no. 3,

pp. 438–460, March 2011.

S.-C. Liew, S. Zhang, and L. Lu, “Physical-layer network coding: Tutorial, survey, and beyond,” in Physical

Communication, to appear 2011. http://arxiv.org/abs/1105.4261.



References – Relaying

T. Cover and A. El Gamal, “Capacity Theorems for the Relay Channel,” IEEE Transactions on Information

Theory., vol. 25, no. 5, pp. 572–584, 1979.

G. Kramer, M. Gastpar, and P. Gupta, “Cooperative strategies and capacity theorems for relay networks,” IEEE

Transactions on Information Theory, vol. 51, pp. 3037–3063, September 2005.

S. Avestimehr, S. Diggavi, and D. Tse, “Wireless network information flow: A deterministic approach,” IEEE

Transactions on Information Theory, vol. 57, pp. 1872–1905, April 2011.

S. H. Lim, Y.-H. Kim, A. El Gamal, and S.-Y. Chung, “Noisy network coding,” IEEE Transactions on Information

Theory, vol. 57, pp. 3132–3152, May 2011.

Y. Song and N. Devroye, “List decoding for nested lattices and applications to relay channels,” in Proc. Allerton

Conf. Commun. Control Comput., Monticello, IL, Sep. 2010.

Y. Song and N. Devroye, “A lattice compress-and-forward strategy for canceling known interference in Gaussian

multi-hop channels,” Conf. on Inf. Sci. and Sys., Baltimore, March 2011.

M. Nokleby, B. Aazhang, ”Lattice coding over the relay channel,” IEEE Int. Conf. Comm., Kyoto, Japan, June

2011.



References – Lattices

J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups. New York: Springer, 1992.

R. de Buda, “Some optimal codes have structure,” IEEE Journal on Sel. Areas Comm., vol. 7, no. 6, pp. 893–899,

Aug. 1989.

T. Linder, C. Schlegel, and K. Zeger, “Corrected proof of de Buda’s theorem,” IEEE Transactions on Information

Theory, vol. 39, no. 5, pp. 1735–1737, Sep. 1993.

G. Poltyrev, “On coding without restrictions for the AWGN channel,” IEEE Transactions on Information Theory,

vol. 40, no. 2, pp. 409–417, Mar. 1994.

R. Zamir and M. Feder, “On lattice quantization noise,” IEEE Transactions on Information Theory, vol. 42, no. 4,

pp. 1152–1159, July 1996.

H.-A. Loeliger, “Averaging bounds for lattices and linear codes,” IEEE Transactions on Information Theory,

vol. 43, no. 6, pp. 1767–1773, Nov. 1997.

R. Urbanke and B. Rimoldi, “Lattice codes can achieve capacity on the AWGN channel,” IEEE Transactions on

Information Theory, vol. 44, no. 1, pp. 273–278, Jan. 1998.

G. Forney, M. Trott, and S.-Y. Chung, “Sphere-bound-achieving coset codes and multilevel coset codes,” IEEE

Transactions on Information Theory, vol. 46, no. 3, pp. 820–850, May 2000.

R. Zamir, S. Shamai (Shitz), and U. Erez, “Nested linear/lattice codes for structured multiterminal binning,” IEEE

Transactions on Information Theory, vol. 48, no. 6, pp. 1250–1276, Jun. 2002.

U. Erez and R. Zamir, “Achieving 1

2
log (1 + SNR) on the AWGN channel with lattice encoding and decoding,”

IEEE Transactions on Information Theory, vol. 50, no. 10, pp. 2293–2314, Oct. 2004.

U. Erez, S. Litsyn, and R. Zamir, “Lattices which are good for (almost) everything,” IEEE Transactions on

Information Theory, vol. 51, no. 10, pp. 3401–3416, Oct. 2005.

R. Zamir, “Lattices are everywhere,” in Proc. Workshop Inf. Theory Applications, La Jolla, CA, Feb. 2009.



References – Lattices Help: Interference Channels

G. Bresler and A. Parekh and D. N. C. Tse, ”The approximate capacity of the many-to-one and one-to-many

Gaussian interference channels,” IEEE Transactions on Information Theory., vol. 56, no. 9, pp. 4566-4592, Sep.
2010.

S. Sridharan, A. Jafarian, S. Vishwanath, and S. A. Jafar, “Capacity of symmetric K-user Gaussian very strong

interference channels,” in GLOBECOM, Monticello, IL, Sep. 2008.

S. Sridharan, A. Jafarian, S. Vishwanath, S. A. Jafar, and S. Shamai, “A layered lattice coding scheme for a class

of three user Gaussian interference channels,” in Proc. Allerton Conf. Commun. Control Comput., Monticello, IL,
Sep. 2008.

R. Etkin and E. Ordentlich, “The degrees-of-freedom of the K-user Gaussian interference channel is discontinuous

at rational channel coefficients,” IEEE Transactions on Information Theory, vol. 55, pp. 4932–4946, November
2009.

A. S. Motahari, S. O. Gharan, M.-A. Maddah-Ali, and A. K. Khandani, “Real interference alignment: Exploiting

the potential of single antenna systems,” IEEE Transactions on Information Theory, Submitted November 2009.
See http://arxiv.org/abs/0908.2282.

S. Vishwanath and S. A. Jafar, “Generalized degrees of freedom of the symmetric Gaussian K-User interference

channel,” IEEE Transactions on Information Theory, vol.56, no.7, pp.3297-3303, July 2010.

B. Bandemer and A. El Gamal, Interference decoding for deterministic channels, IEEE Transactions on Information

Theory, vol. 57, no. 5, pp. 2966–2975, May 2011

A. Jafarian and S. Vishwanath, “Gaussian interference networks: Lattice alignment,” Proc. of Inf. Theory

Workshop, Cairo, Egypt, January 2010.

O. Ordentlich and U. Erez, “Interference Alignment at Finite SNR for Time-Invariant Channels,” Submitted to

IEEE Transactions on Information Theory April 2011. http://arxiv.org/abs/1104.5456

H. Huang and V. K. N. Lau, Y. Du and S. Liu, “Robust lattice alignment for K-user MIMO interference channels

with imperfect channel knowledge,” IEEE Transactions on Information Theory, vol. 59, no. 7, pp. 3315–3325, July
2011.



References – Lattices Help: Compute-and-Forward

B. Nazer and M. Gastpar, “Compute-and-forward: Harnessing interference through structured codes,” IEEE

Transactions on Information Theory, to appear October 2011. http://arxiv.org/abs/0908.2119

M. P. Wilson, K. Narayanan, H. Pfister, and A. Sprintson, “Joint physical layer coding and network coding for

bidirectional relaying,” IEEE Transactions on Information Theory, vol. 11, no. 56, pp. 5641–5654, Nov. 2010.

W. Nam, S.-Y. Chung, and Y. H. Lee, “Capacity of the Gaussian two-way relay channel to within 1/2 bit,” IEEE

Transactions on Information Theory, vol. 56, no. 11, pp. 5488–5494, Nov. 2010.

U. Niesen and P. Whiting, “The Degrees of Freedom of Compute-and-Forward,” arXiv:1101.2182v1 [cs.IT], 2011.

L. Ong, C. M. Kellett, and S. J. Johnson, “Capacity theorems for the AWGN multi-way relay channel,” in Proc.

IEEE Int. Symp. Inf. Theory, Austin, TX, Jun. 2010.

C. Feng, D. Silva, and F. Kschischang, “An algebraic approach to physical-layer network coding,” in Proc. IEEE

Int. Symp. Inf. Theory, Austin, TX, June 2010.

B. Hern and K. Narayanan, “Multilevel coding schemes for compute-and-forward,” see Proc. IEEE Int. Symp. Inf.

Theory, St. Petersburg, Russia, June 2011.

O. Ordentlich, J. Zhan, U. Erez, B. Nazer, and M. Gastpar. “Practical Code Design for Compute-and-Forward”,

Proc. IEEE Int. Symp. Inf. Theory, St. Petersburg, Russia, June 2011.

A. Osmane and J.-C. Belfiore, “The Compute-and-Forward Protocol: Implementation and Practical Aspects,”

Submitted to IEEE Communications Letters 2011. http://arxiv.org/abs/1107.0300

M. Nokleby and B. Aazhang, ”Cooperative computation in wireless networks,” Proc. IEEE Int. Symp. Inf. Theory,

St. Petersburg, Russia, June 2011.

B. Nazer, “Compute-and-Forward: Improved Successive Cancellation,” To be submitted.



References – Lattices Help: Cellular Uplink, “Dirty” MAC, Secrecy

A. D. Wyner, Shannon-theoretic approach to a Gaussian cellular multiple-access channel, IEEE Transactions on

Information Theory., vol. 40, pp. 1713 1727, Nov. 1994.

A. Sanderovich, O. Somekh, H. V. Poor, S. and Shamai (Shitz), “Uplink macro diversity of limited backhaul

cellular network,” IEEE Transactions on Information Theory, vo. 55, no. 8, pp. 3457–3478. August 2009.

A. Sanderovich, M. Peleg, and S. Shamai (Shitz), “Scaling laws in decentralized processing of interfered Gaussian

channels,” in Proc. Int. Zurich Seminar Comm., Zurich, Switzerland, March 2008.

B. Nazer, A. Sanderovich, M. Gastpar, and S. Shamai, “Structured Superposition for Backhaul Constrained

Cellular Uplink,” in Proc. IEEE Int. Symp. Inf. Theory, Seoul, South Korea, Jun. 2009.

U. Erez, S. Shamai, and R. Zamir, “Capacity and lattice strategies for canceling known interference,” IEEE

Transactions on Information Theory, vol. 51, no. 11, pp. 3820–3833, November 2005.

T. Philosof and R. Zamir, “The rate loss of single-letter characterization: The “dirty” multiple access channel,”

IEEE Transactions on Information Theory, vol. 55, no. 6, pp. 2442–2454, June 2009.

T. Philosof, R. Zamir, and U. Erez “The capacity region of the binary dirty MAC,” Proc. of Inf. Theory Workshop,

Volos, Greece, June 2009.

T. Philosof, R. Zamir, U. Erez, and A. J. Khisti, “Lattice strategies for the dirty multiple access channel,” IEEE

Transactions on Information Theory, vol. 57, no. 8, pp. 5006–5035, August 2011.

X. He and A. Yener, “Providing secrecy with structured codes: Tools and applications to two-user Gaussian

channels,” Submitted to IEEE Transactions on Information Theory, Jul. 2009, see http://arxiv.org/abs/0907.5388

S. Agrawal and S. Vishwanath, “On the secrecy rate of interference networks using structured codes,” in Proc.

IEEE Int. Symp. Inf. Theory, Seoul, South Korea, Jun. 2009.

X. He and A. Yener, “The Gaussian many-to-one interference channel with confidential messagse,” Submitted to

IEEE Transactions on Information Theory, Apr. 2010, see http://arxiv.org/abs/1005.0624



References – Lattices Help: Distributed Source Coding

D. Krithivasan and S. S. Pradhan, “Lattices for distributed source coding: Jointly Gaussian sources and

reconstruction of a linear function,” IEEE Transactions on Information Theory, vol. 55, pp. 5268–5651, December
2009.

S. Tavildar and P. Viswanath and A. B. Wagner, “The Gaussian Many-Help-One Distributed Source Coding

Problem,” IEEE Transactions on Information Theory., vol. 56, no. 1, pp. 564–571, 2010.

A. B. Wagner, On distributed compression of linear functions, IEEE Transactions on Information Theory., Vol. 57,

No. 1, pp. 79-94, 2011.

D. Krithivasan and S. S. Pradhan, “Distributed source coding using Abelian group codes: A new achievable

rate-distortion region,” IEEE Transactions on Information Theory, vol. 57, no.3, pp. 1495–1519, March 2011.

M. A. Maddah-Ali, and D. N. C. Tse, “Interference neutralization in distributed lossy source coding,” in Proc.

IEEE Int. Symp. Inf. Theory, Austin, TX, Jun. 2009.


